Kinetics of coenzyme binding to liver alcohol dehydrogenase in the pH range 10-12

Abstract
1. On- and off-velocity constants for NADH and NAD+ binding to liver alcohol dehydrogenase in the pH range 10-12 have been determined by stopped-flow kinetic methods. The results are consistent with previously reported equilibrium binding data and proposals attributing the main effects of pH on coenzyme binding to ionization of Lys-228 and zinc-bound water. 2. Deprotonation of the group identified as Lys-228 decreases the NADH and NAD+ association rates by a factor exceeding 20 and has no detectable effect on the coenzyme dissociation rates in the examined pH range. 3. Ionization of the group identified as zinc-bound water causes a 3-fold increase of the rate of NADH dissociation from the enzyme, and decreases the rate of NAD+ dissociation by a factor of 200. The NADH and NAD+ association rates are decreased by a factor of 30 and 5, respectively. 4. The observed effects of pH can be rationalized in terms of electrostatic interactions of the ionizing groups with the charges present on the coenzyme molecules and lend support to the idea that binding of the coenzyme nicotinamide ring occurs subsequent to binding of the AMP portion of the coenzyme.

This publication has 22 references indexed in Scilit: