P38 MAPK: critical molecule in thrombin-induced NF-κB-dependent leukocyte recruitment

Abstract
Thrombin-stimulated endothelium synthesizes numerous adhesion molecules to recruit leukocytes; however, it is unknown which intracellular pathways are responsible for this event. A recent report from our laboratory has shown that thrombin induces E-selectin expression and that blocking nuclear factor-κB (NF-κB) activity partially blocked both E-selectin expression (60%) and leukocyte recruitment. In this study, we systematically assessed the importance of p38 MAPK in thrombin-induced NF-κB activation and E-selectin-dependent leukocyte recruitment. Thrombin caused phosphorylation of p38 MAPK, its substrate ATF-2, and JNK MAPK, but not ERK MAPK. The p38 MAPK inhibitors, SKF86002 and SB-203580 only reduced ATF-2 activity. We treated human umbilical vein endothelial cells with SKF86002, 1 h before thrombin stimulation, and noted inhibition of NF-κB mobilization and complete inhibition of leukocyte rolling and adhesion in a laminar flow chamber. Significant inhibition of leukocyte recruitment and E-selectin expression was also observed with SB-203580. SKF86002 did not affect other systems, including tumor necrosis factor-α-induced E-selectin-dependent leukocyte recruitment. Moreover, thrombin-induced rapid mobilization of P-selectin from Weibel Palade bodies was not p38 MAPK dependent. These data suggest that thrombin induces p38 MAPK activation, which leads to NF-κB mobilization to the nucleus and causes the upregulation of E-selectin and subsequent leukocyte recruitment.

This publication has 29 references indexed in Scilit: