On testing models for the pressure–strain correlation of turbulence using direct simulations

Abstract
Direct simulations of homogeneous turbulence have, in recent years, come into widespread use for the evaluation of models for the pressure–strain correlation of turbulence. While work in this area has been beneficial, the increasingly common practice of testing the slow and rapid parts of these models separately in uniformly strained turbulent flows is shown in this paper to be unsound. For such flows, the decomposition of models for the total pressure–strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in this manner, misleading conclusions can be drawn about the performance of pressure–strain models. This point is amplified by illustrative calculations of homogeneous shear flow where other pitfalls in the evaluation of models are also uncovered. More meaningful measures for testing the performance of pressure–strain models in uniformly strained turbulent flows are proposed and the implications for turbulence modeling are discussed.