Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F

Abstract
We have isolated several peptides from random peptide phage display libraries that specifically recognize the cell cycle regulatory transcription factor E2F and inhibit DNA binding of E2F/DP heterodimers (E2F-1, E2F-2, E2F-3, E2F-4 or E2F–5, and DP-1). The inhibitory efficiency could be strongly enhanced by generating branched tetravalent molecules. To analyse the biological consequences of peptide-mediated E2F inhibition, we fused two of these branched molecules to a cell-penetrating peptide derived from the HTV-Tat protein. Incubation of human tumor cells with these branched Tat-containing peptides led to an inhibition of cell proliferation and induction of apoptosis. These results provide new insights into the function of E2F and further validate E2F as a potential therapeutic target in proliferative diseases.