Abstract
A drop of fluid, initially held spherical by surface tension, will deform when an electric or magnetic field is applied. The deformation will depend on the electric/magnetic properties (permittivity/permeability and conductivity) of the drop and of the surrounding fluid. The full time-dependent low-Reynolds-number problem for the drop deformation is studied by means of a numerical boundary-integral technique. Fluids with arbitrary electrical properties are considered, but the viscosities of the drop and of the surrounding fluid are assumed to be equal.Two modes of breakup have been observed experimentally: (i) tip-streaming from drops with pointed ends, and (ii) division of the drop into two blobs connected by a thin thread. Pointed ends are predicted by the numerical scheme when the permittivity of the drop is high compared with that of the surrounding fluid. Division into blobs is predicted when the conductivity of the drop is higher than that of the surrounding fluid. Some experiments have been reported in which the drop deformation exhibits hysteresis. This behaviour has not in general been reproduced in the numerical simulations, suggesting that the viscosity ratio of the two fluids can play an important role.

This publication has 23 references indexed in Scilit: