Spatial photoselection of single molecules on the surface of spherical microcavities

Abstract
We show that ultrasensitive microdroplet-stream fluorescence techniques combined with surfactant forms of Rhodamine dyes can be used to probe single molecules on the surfaces of spherical microcavities. Individual octadecyl Rhodamine B molecules, shown previously by ensemble measurements to be localized and oriented at the surfaces of liquid microspheres, were spatially photoselected primarily along great circles lying perpendicular or parallel to the detection axis by use of polarized laser excitation. A polarization dependence is observed in the distribution of single-molecule fluorescence amplitudes that can be interpreted qualitatively in terms of position-dependent fluorescence-collection efficiencies.