Statistical signal processing using wavelet-domain hidden Markov models

Abstract
Most wavelet-based statistical signal and image processing techniques treat the wavelet coefficients as though they were statistically independent. This assumption is unrealistic; considering the statistical dependencies between wavelet coefficients can yield substantial performance improvements. In this paper, we develop a new framework for wavelet-based signal processing that employs hidden Markov models to characterize the dependencies between wavelet coefficients.

This publication has 0 references indexed in Scilit: