Dislocation structures and anomalous flow in L12 compounds
- 1 June 1991
- journal article
- Published by EDP Sciences in Journal de Physique III
- Vol. 1 (6) , 1025-1053
- https://doi.org/10.1051/jp3:1991170
Abstract
The theory of the anomalous flow behavior of LI2 compounds has developed over the last 30 years. This theory has a foundation in the early estimates of the crystallographic anisotropy of antiphase boundary (APB) energy in these compounds. In spite of this critical aspect of the theory, it is only in the last five years that electron microscopy has been employed to quantify the APB energies and to determine the detailed nature of dislocation structures at each stage of deformation. The recent studies of several research groups have provided essentially consistent new details about the nature of dislocations in Ni3AI and a few other LI2 compounds which exhibit anomalous flow behavior. These studies have introduced several new concepts for the controlling dislocation mechanisms. Additionally, these studies have shown that in Ni3AI, the APB energies have only small variations in magnitude with change of the APB plane (they are nearly isotropic), are relatively insensitive to changes in solute content, and the anisotropy ratio does not correlate with alloy strength. The present manuscript provides a critical review of the new transmission electron microscopy (TEM) results along with the new concepts for the mechanism of anomalous flow. Inconsistencies and deficiencies within these new concepts are identified and discussed. The collective set of electron-microscopy results is discussed within the context of both the mechanical behavior of LI2 compounds and the Greenberg and Paidar, Pope and Vitek (PPV) models for anomalous flow. Conceptual consistency with these models can only be constructed if the Kear-Wilsdorf (K-W) configurations are treated as an irreversible work hardening or relaxation artifact and, specific details of these two models cannot be shown by electron microscopy. Alternatively, the structural features recently revealed by electron microscopy have not been assembled into a self-consistent model for yielding which fully addresses the mechanical behavior phenomenologyKeywords
This publication has 0 references indexed in Scilit: