Abstract
We have suggested that the order of cellular vascular perfusion within the islet is important in the regulation of islet hormone secretion. Anatomically, the A and D cells appear to be randomly dispersed throughout the mantle. Although islet capillary blood flow is known to be from the B-cell core to the A- and D-cell mantle, it has not yet been established whether the cells of the mantle may influence one another vascularly. Rat pancreata were perfused in vitro anterogradely and retrogradely with or without glucagon antibody in order to determine the order of cellular perfusion and interaction between the A and D cells in the islet mantle. Anterograde infusion of glucagon antibody did not affect insulin secretion, but rapidly decreased somatostatin secretion −46±8%, (pp<0.005) but had no effect upon somatostatin secretion. This study not only confirms a core to mantle islet perfusion but also establishes that the A cell precedes the D cell in the terms of vascular perfusion. Thus within the islet, vascular borne insulin regulates the release of glucagon, which in turn, regulates the release of somatostatin. Somatostatin is vascularly neutral owing to its downstream position in the sequence (B to A to D) of cellular perfusion.