Abstract
Improvements in optical remote sensing spectral resolution and increased data volumes necessitates the development of improved techniques for quantitative geological analysis. Laboratory spectral studies indicate that absorption band positions, depths and widths are correlated with diagnostic physicochemical mineral properties such as composition and abundance. Most current analytical techniques are incapable of providing comprehensive quantitative analysis of hyperspectral geological remote sensing data. Factors which must be considered for hyperspectral remote sensing campaigns include spectral resolution, analytical technique, band pass positions and spatial resolution. In many cases the volume of data required to address specific issues can be reduced through intelligent selection of band passes and analytical techniques.