Nonequilibrium Response of the Global Ocean to the 5-Day Rossby–Haurwitz Wave in Atmospheric Surface Pressure
Open Access
- 1 October 1997
- journal article
- Published by American Meteorological Society in Journal of Physical Oceanography
- Vol. 27 (10) , 2158-2168
- https://doi.org/10.1175/1520-0485(0)027<2158:nrotgo>2.0.co;2
Abstract
The response of the global ocean to the surface pressure signal associated with the well-known 5-day Rossby–Haurwitz atmospheric mode is explored using analytical and numerical tools. Solutions of the Laplace tidal equations for a flat-bottom, globe-covering ocean, point to a depth-independent nonequilibrium response related to the near-resonant excitation of the barotropic oceanic mode. Numerical experiments with a shallow-water model illustrate the effects of realistic continental boundaries, topography, and dissipation on the solutions. The character of the oceanic adjustment and the structure of resonances changes substantially, but a nonequilibrium response occurs in all cases studied. Besides the excitation of large-scale vorticity modes or waves, which becomes less important when topography and strong dissipation are present, basin-scale nonequilibrium signals are associated with gravity wave dynamics and the process of interbasin mass adjustment in the presence of global-scale forcing and... Abstract The response of the global ocean to the surface pressure signal associated with the well-known 5-day Rossby–Haurwitz atmospheric mode is explored using analytical and numerical tools. Solutions of the Laplace tidal equations for a flat-bottom, globe-covering ocean, point to a depth-independent nonequilibrium response related to the near-resonant excitation of the barotropic oceanic mode. Numerical experiments with a shallow-water model illustrate the effects of realistic continental boundaries, topography, and dissipation on the solutions. The character of the oceanic adjustment and the structure of resonances changes substantially, but a nonequilibrium response occurs in all cases studied. Besides the excitation of large-scale vorticity modes or waves, which becomes less important when topography and strong dissipation are present, basin-scale nonequilibrium signals are associated with gravity wave dynamics and the process of interbasin mass adjustment in the presence of global-scale forcing and...Keywords
This publication has 0 references indexed in Scilit: