Flows of thin streams with free boundaries

Abstract
A method is developed for determining any thin steady two-dimensional potential flow with free and/or rigid boundaries in the presence of gravity. The flow is divided into a number of parts and in each part the flow and its free boundaries are represented as asymptotic series in powers of the slenderness ratio of the stream. There are three basic flows, having two, one and no free boundaries and called jet flow, wall flow and channel flow, respectively. First the three expansions for these flows are found, extending results of Keller & Weitz (1952). They are called outer expansions to distinguish them from the inner expansions which apply near the ends of the stream or at the junction of two different types of flow. The inner and outer expansions must be matched at a junction to find how the emerging flow is related to the entering flow. This process can be continued to build up any complex flow involving thin streams. The method is illustrated in the case of a wall flow that leaves the wall to become a jet, which includes the case of a waterfall treated by Clarke (1965) in a similar way. In part 2 (to be published) other inner expansions are found and matched to outer expansions, providing the ingredients for the construction of the solutions of many flow problems.

This publication has 3 references indexed in Scilit: