A Surface EMG Generation Model With Multilayer Cylindrical Description of the Volume Conductor

Abstract
We propose a model for surface electromyography (EMG) signal generation with cylindrical description of the volume conductor. The model is more general and complete with respect to previous approaches. The volume conductor is described as a multilayered cylinder in which the source can be located either along the longitudinal or the angular direction, in any of the layers. The source is represented as a spatio-temporal function which describes the generation, propagation, and extinction of the intracellular action potential at the end-plate, along the fiber, and at the tendons, respectively. The layers are anisotropic. The volume conductor effect is described as a two-dimensional spatial filtering. Electrodes of any shape or dimension are simulated, forming structures which are described as spatial filters. The analytical derivation which leads to the signal in the temporal domain is performed in the spatial and temporal frequency domains. Numerical issues related to the frequency-based approach are discussed. The descriptions of the volume conductor and of the source are applied to the cases of signal generation from a limb and a sphincter muscle. Representative simulations of both cases are provided. The resultant model is based on analytical derivations and constitutes a step forward in surface EMG signal modeling, including features not described in any other analytical approach.