Structure of rat tail tendon collagen examined by atomic force microscope

Abstract
The Atomic Force Microscope (AFM) was used to inspect collagen fibrils deposited on mica sheets at different fibrillogenesis times. Collagen was obtained from rat tail tendon fibers. Various fibril forms were observed, together with the characteristic periodic intra-fibril structure (D-bands). The fibril thickness, width, D-band periodicity and depth were measured and the statistical distribution of these parameters at 1, 2, 5, 10 and 15 days of in vitro fibril formation time was calculated. The fibrils showed an increasing size with time, but the band interval measure remained stable. The band depth, after an initial increase, exhibited a relative steadiness. The results indicate that AFM offers, at low resolution, images qualitatively similar to those obtained with electron microscopy, but with less manipulation of the sample. A quantitative evaluation of collagen structural features in the nanometer scale is made possible by AFM.