Visual category recognition using Spectral Regression and Kernel Discriminant Analysis

Abstract
Visual category recognition (VCR) is one of the most important tasks in image and video indexing. Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. Recently, Spectral Regression combined with Kernel Discriminant Analysis (SR-KDA) has been successful in many classification problems. In this paper, we adopt this solution to VCR and demonstrate its advantages over existing methods both in terms of speed and accuracy. The distinctiveness of this method is assessed experimentally using an image and a video benchmark: the PASCAL VOC Challenge 08 and the Mediamill Challenge. From the experimental results, it can be derived that SR-KDA consistently yields significant performance gains when compared with the state-of-the art methods. The other strong point of using SR-KDA is that the time complexity scales linearly with respect to the number of concepts and the main computational complexity is independent of the number of categories.

This publication has 17 references indexed in Scilit: