Complete Switchgrass Genetic Maps Reveal Subgenome Collinearity, Preferential Pairing and Multilocus Interactions
- 1 July 2010
- journal article
- research article
- Published by Oxford University Press (OUP) in Genetics
- Vol. 185 (3) , 745-760
- https://doi.org/10.1534/genetics.110.113910
Abstract
Polyploidy is an important aspect of the evolution of flowering plants. The potential of gene copies to diverge and evolve new functions is influenced by meiotic behavior of chromosomes leading to segregation as a single locus or duplicated loci. Switchgrass (Panicum virgatum) linkage maps were constructed using a full-sib population of 238 plants and SSR and STS markers to access the degree of preferential pairing and the structure of the tetraploid genome and as a step toward identification of loci underlying biomass feedstock quality and yield. The male and female framework map lengths were 1645 and 1376 cM with 97% of the genome estimated to be within 10 cM of a mapped marker in both maps. Each map coalesced into 18 linkage groups arranged into nine homeologous pairs. Comparative analysis of each homology group to the diploid sorghum genome identified clear syntenic relationships and collinear tracts. The number of markers with PCR amplicons that mapped across subgenomes was significantly fewer than expected, suggesting substantial subgenome divergence, while both the ratio of coupling to repulsion phase linkages and pattern of marker segregation indicated complete or near complete disomic inheritance. The proportion of transmission ratio distorted markers was relatively low, but the male map was more extensively affected by distorted transmission ratios and multilocus interactions, associated with spurious linkages.This publication has 89 references indexed in Scilit:
- Dihaploid Stocks of Switchgrass Isolated by a Screening ApproachBioEnergy Research, 2010
- The flowering world: a tale of duplicationsTrends in Plant Science, 2009
- Cellulosic BiofuelsAnnual Review of Plant Biology, 2009
- The advantages and disadvantages of being polyploidNature Reviews Genetics, 2005
- Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markersTheoretical and Applied Genetics, 2005
- Identification and mode of action of self-compatibility loci in Lolium perenne L.Heredity, 2004
- Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and ricePlant Science, 2004
- Tall fescue EST-SSR markers with transferability across several grass speciesTheoretical and Applied Genetics, 2004
- Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne LHeredity, 2002
- PCR-mediated recombination in amplification products derived from polyploid cottonTheoretical and Applied Genetics, 2002