Involvement of carboxyl groups in the divalent cation permeability of rat parotid gland basolateral plasma membrane

Abstract
Divalent cation permeability of rat parotid gland basolateral plasma membranes was examined in dispersed parotid acini (by Ca2+ or Mn2+ entry) and in isolated basolateral plasma membrane vesicles (BLMV, by45Ca2+ influx). Mn2+ entry (fura2 quenching) was about 1.6 fold higher in internal Ca2+ pool-depleted acini (Ca2+-depl acini) than in unstimulated cells. Mn2+ entry into Ca2+-depl acini was increased at external pH>7.4 and decreased at pH2+-depl acini with the relatively hydrophobic carboxylic group reagent, N,N′-dicyclohexylcarbodiimide (DCCD, 50 μM for 30 min) resulted in the inhibition of Mn2+ entry into Ca2+-depl acini to unstimulated levels. Another hydrophobic carboxyl group reagent, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and the relatively hydrophilic carboxyl group reagents, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide (CMCD) did not affect Mn2+ entry. Similar to the effects in intact acini, Ca2+ influx into BLMV was decreased when the external pH was lowered below 7.4. Also DCCD (5 mM, 30 min), but not EEDQ, decreased (40%) Ca2+ influx in BLMV. However, unlike in acini, the hydrophilic reagents, EDC, EAC, and CMCD decreased Ca2+ permeability in BLMV and the effects were nonadditive with the decrease induced by DCCD. The aggregate effects of carboxyl group reagents on the Ca2+ and Mn2+ permeability in BLMV and intact acini, respectively, suggest that a critical carboxyl group (most likely accessible from the cytoplasmic side of the plasma membrane) is involved in divalent cation flux in rat parotid acinar cells.