Expression of liver plasma membrane transporters in gallstone-susceptible and gallstone-resistant mice
- 1 February 2002
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 361 (3) , 673-9
- https://doi.org/10.1042/0264-6021:3610673
Abstract
We tested the hypothesis that differential expression of liver plasma membrane transporters might account for variations in biliary lipid secretion rates between gallstone-susceptible C57L/J and gallstone-resistant AKR/J mice. Plasma membrane fractions and total RNA isolated from livers of mice fed with a control or lithogenic (15% fat/1.25% cholesterol/0.5% cholic acid) diet were used for measurements of steady-state gene expression of hepatobiliary transport systems for bile salts (Ntcp1/Slc10a1, Oatp1/Slc21a1 and Bsep/Abcb11), phospholipids (Mdr2/Abcb4), organic anions (Mrp2/Abcc2) and organic cations (Oct1/Slc22a1). Irrespective of the diet, the steady-state gene expression of hepatobiliary transporters did not differ significantly between the two strains. Despite a higher basal bile flow and bile-salt secretion in C57L mice, Mrp2 (Abcc2) and Bsep (Abcb11) expression did not differ between the two strains. Elevated biliary phospholipid secretion in response to the lithogenic diet was linked to increased Mdr2 (Abcb4) protein expression, whereas the induction of Oct1 (Slc22a1) might reflect an enhanced uptake of choline for augmented phospholipid synthesis. In response to the lithogenic diet, Bsep (Abcb11) protein expression was up-regulated only marginally and bile salt secretion did not increase. The down-regulation of Ntcp1 (Slc10a1) protein expression might protect hepatocytes from high intracellular bile-salt loads. We conclude that variations in protein function rather than in the gene expression of liver plasma membrane transporters might account for variations in biliary lipid secretion rates. Our findings support the concept that the formation of lithogenic bile is caused by the hypersecretion of bile salts as a result of augmented availability of canalicular membrane cholesterol, possibly amplified by bile-salt-phospholipid uncoupling due to the increased bile flow.Keywords
This publication has 44 references indexed in Scilit:
- 3-hydroxy-3-methylglutaryl–coenzyme a reductase inhibitors (statins) induce hepatic expression of the phospholipid translocase mdr2 in ratsGastroenterology, 1999
- A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndromeHepatology, 1997
- Regulation and translocation of ATP-dependent apical membrane proteins in rat liverAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 1997
- Regulation of mdr2 P-glycoprotein expression by bile saltsBiochemical Journal, 1997
- The Lxl gene maps to mouse Chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transportersMammalian Genome, 1996
- Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein ReceptorScience, 1996
- Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane.Journal of Lipid Research, 1996
- Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice.Proceedings of the National Academy of Sciences, 1995
- New insights into the mechanism of bile acid-induced biliary lipid secretion.1995
- Functional characterization of the basolateral rat liver organic anion transporting polypeptideHepatology, 1994