Mechanics of carbon nanotubes
Top Cited Papers
- 16 October 2002
- journal article
- Published by ASME International in Applied Mechanics Reviews
- Vol. 55 (6) , 495-533
- https://doi.org/10.1115/1.1490129
Abstract
Soon after the discovery of carbon nanotubes, it was realized that the theoretically predicted mechanical properties of these interesting structures–including high strength, high stiffness, low density and structural perfection–could make them ideal for a wealth of technological applications. The experimental verification, and in some cases refutation, of these predictions, along with a number of computer simulation methods applied to their modeling, has led over the past decade to an improved but by no means complete understanding of the mechanics of carbon nanotubes. We review the theoretical predictions and discuss the experimental techniques that are most often used for the challenging tasks of visualizing and manipulating these tiny structures. We also outline the computational approaches that have been taken, including ab initio quantum mechanical simulations, classical molecular dynamics, and continuum models. The development of multiscale and multiphysics models and simulation tools naturally arises as a result of the link between basic scientific research and engineering application; while this issue is still under intensive study, we present here some of the approaches to this topic. Our concentration throughout is on the exploration of mechanical properties such as Young’s modulus, bending stiffness, buckling criteria, and tensile and compressive strengths. Finally, we discuss several examples of exciting applications that take advantage of these properties, including nanoropes, filled nanotubes, nanoelectromechanical systems, nanosensors, and nanotube-reinforced polymers. This review article cites 349 references. �DOI: 10.1115/1.1490129�Keywords
This publication has 305 references indexed in Scilit:
- Molecular Dynamics Simulations of Carbon Nanotube Rolling and Sliding on GraphiteMolecular Simulation, 2000
- A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorodsJournal of the Mechanics and Physics of Solids, 2000
- Quasicontinuum models of fracture and plasticityEngineering Fracture Mechanics, 1998
- Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon NanotubesMicroscopy and Microanalysis, 1998
- Quasicontinuum analysis of defects in solidsPhilosophical Magazine A, 1996
- Stabilization of the amorphous phase inside carbon nanotubes: Solidification in a constrained geometryPhilosophical Magazine Letters, 1994
- Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methodsThe Journal of Chemical Physics, 1994
- Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclustersApplied Physics Letters, 1993
- Yttrium carbide in nanotubesNature, 1993
- N herungsmethode zur L sung des quantenmechanischen Mehrk rperproblemsThe European Physical Journal A, 1930