The early universe in a generalized theory of gravitation

Abstract
The standard Friedmann–Robertson–Walker (FRW) big-bang model of the universe requires special initial conditions: the early universe is highly homogeneous and isotropic even though there exist causally disconnected regions (horizon problem). A plane symmetric (anisotropic) solution of a system of field equations in a generalized theory of gravitation, predicts the beginning of the universe as a vacuum instability at a specific fundamental time (which can be associated with the Planck time (tp)), after which matter is created as the universe begins to expand. At a time t = tc there is a singular expansion, the anisotropy vanishes, and the physical horizon becomes infinite. Thereafter the solution of the field equations goes over into the FRW model. Thus the special initial conditions of the FRW model at the big-bang singularity t = tc are predicted by the theory.

This publication has 0 references indexed in Scilit: