Abstract
Photodynamic therapy (PDT) has been proven as a method of tumor eradication and is currently being used clinically to treat a wide variety of malignancies. Although it is understood that the interaction of light and sensitizer results in the production of potentially damaging oxygen species, the mechanism by which tumors are destroyed has yet to be defined fully. Using a new porphyrin sensitizer, benzoporphyrin derivative (BPD), we examined protein expression in murine tumor cells following treatment as an indication of molecular changes to target tissue concurrent with PDT-mediated damage. In order to assess the relevance of the results obtained using an in vitro PDT model, metabolic labeling of proteins synthesized subsequent to PDT was performed both in tumor cells grown and treated in tissue culture dishes and in cells explanted from PDT-treated solid tumors. We observed that the oxidative stress associated with PDT-resulted in the induction of a number of proteins corresponding to a set of heat-shock or stress proteins, and that the pattern of expression was similar when tumor cells were treated in vitro and in vivo. These results support the use of in vitro models in the dissection of the molecular effects of PDT and provide the foundation for future experiments that will examine the role of the immune system in tumor eradication by PDT.