DNA Vaccination against Tuberculosis: Expression of a Ubiquitin-Conjugated Tuberculosis Protein Enhances Antimycobacterial Immunity
Open Access
- 1 June 2000
- journal article
- Published by American Society for Microbiology in Infection and Immunity
- Vol. 68 (6) , 3097-3102
- https://doi.org/10.1128/iai.68.6.3097-3102.2000
Abstract
Genetic immunization is a promising new technology for developing vaccines against tuberculosis that are more effective. In the present study, we evaluated the effects of intracellular turnover of antigens expressed by DNA vaccines on the immune response induced by these vaccines in a mouse model of pulmonary tuberculosis. The mycobacterial culture filtrate protein MPT64 was expressed as a chimeric protein fused to one of three variants of the ubiquitin protein (UbG, UbA, and UbGR) known to differentially affect the intracellular processing of the coexpressed antigens. Immunoblot analysis of cell lysates of in vitro-transfected cells showed substantial differences in the degradation rate of ubiquinated MPT64 (i.e., UbG64 < UbA64 < UbGR64). The specific immune response generated in mice correlated with the stability of the ubiquitin-conjugated antigen. The UbA64 DNA vaccine induced a weak humoral response compared to UbG64, and a mixed population of interleukin-4 (IL-4)- and gamma interferon (IFN-γ)-secreting cells. Vaccination with the UbGR64 plasmid generated a strong Th1 cell response (high IFN-γ, low IL-4) in the absence of a detectable humoral response. Aerogenic challenge of vaccinated mice withMycobacterium tuberculosisindicated that immunization with both the UbA64- and UbGR64-expressing plasmids evoked an enhanced protective response compared to the vector control. The expression of mycobacterial antigens from DNA vaccines as fusion proteins with a destabilizing ubiquitin molecule (UbA or UbGR) shifted the host response toward a stronger Th1-type immunity which was characterized by low specific antibody levels, high numbers of IFN-γ-secreting cells, and significant resistance to a tuberculous challenge.Keywords
This publication has 32 references indexed in Scilit:
- Co‐immunization with DNA vaccines expressing granulocyte–macrophage colony‐stimulating factor and mycobacterial secreted proteins enhances T‐cell immunity, but not protective efficacy against Mycobacterium tuberculosisImmunology, 1999
- The Intravenous Model of Murine Tuberculosis is Less Pathogenic Than the Aerogenic Model Owing to a More Rapid Induction of Systemic ImmunityScandinavian Journal of Immunology, 1999
- Induction of MHC class I-restricted CTL response by DNA immunization with ubiquitin-influenza virus nucleoprotein fusion antigensVaccine, 1998
- Induction of Antigen-Specific Cytotoxic T Lymphocytes in Humans by a Malaria DNA VaccineScience, 1998
- Cytokines and costimulatory molecules as genetic adjuvantsImmunology & Cell Biology, 1997
- DNA VACCINESAnnual Review of Immunology, 1997
- Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis.The Journal of Experimental Medicine, 1995
- ELISPOT Assay to Detect Cytokine‐Secreting Murine and Human CellsCurrent Protocols in Immunology, 1994
- Regulation of antibody isotype secretion by subsets of antigen-specific helper T cellsNature, 1988
- Protection to mice afforded by bcg vaccines against an aerogenic challenge by three mycobacteria of decreasing virulenceTubercle, 1985