Ion-beam modification of fullerene
- 1 July 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 52 (2) , 841-849
- https://doi.org/10.1103/physrevb.52.841
Abstract
The response of thin films of fullerene () to energetic ion impact is investigated. The diagnostics employed include Fourier-transform infrared and Raman spectroscopies, cross-sectional transmission electron microscopy, and atomic force microscopy. By combining the information obtained from these diagnostics with that from the dependence of the conductivity on ion dose, it is concluded that each molecule completely disintegrates when hit by an energetic ion. The cross section for the destruction is about 6× for irradiation with 620-keV Xe ions. The disintegration occurs when C atoms are knocked out of the molecule either directly by the impinging ion or by an energetic knock-on C atom within the damage cascade. This process is quite different from the Coulomb-explosion mechanism previously proposed in the literature. For very low ion doses ( Xe/) most of the molecules remain intact; however this dose is sufficient to completely disrupt the ordering of the molecules in the van der Waals bonded solid. Disruption of the lattice ordering at such low doses is considered to be attributable to the weakness of the van der Waals forces which bind the clusters together into the molecular solid.
Keywords
This publication has 12 references indexed in Scilit:
- Disintegration ofby heavy-ion irradiationPhysical Review B, 1993
- FullerenesJournal of Materials Research, 1993
- C60 interactions with surfaces, gaseous species and photons: an overviewNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993
- Photoinduced Polymerization of Solid C 60 FilmsScience, 1993
- Doping of fullerenes by ion implantationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993
- Electronic structure, conductivity and superconductivity of alkali metal doped (C60)Accounts of Chemical Research, 1992
- Proton irradiation of thin films of C60moleculesRadiation Effects and Defects in Solids, 1991
- Structure of single-phase superconducting K3C60Nature, 1991
- Photophysics of buckminsterfullerene and other carbon cluster ionsThe Journal of Chemical Physics, 1988
- C60: BuckminsterfullereneNature, 1985