The spatial structure and statistical properties of homogeneous turbulence

Abstract
A direct numerical simulation at resolution 2403 is used to obtain a statistically stationary three-dimensional homogeneous and isotropic turbulent field at a Reynolds number around 1000 (Rλ ≈ 150). The energy spectrum displays an inertial subrange. The velocity derivative distribution, known to be strongly non-Gaussian, is found to be close to, but not, exponential. The nth-order moments of this distribution, as well as the velocity structure functions, do not scale with n as predicted by intermittency models. Visualization of the flow confirms the previous finding that the strongest vorticity is organized in very elongated thin tubes. The width of these tubes is of the order of a few dissipation scales, while their length can reach the integral scale of the flow.