Metabolic consequences of enzyme interactions

Abstract
The fact that enzyme complexes, stable, quasi-stable, and dynamic, exist in cells can no longer be ignored. Experimental evidence done with a variety of techniques has demonstrated these interactions in vitro and in vivo. There is scarcely a single known metabolic pathway in which no interactions of any of its enzymes exist (see reference 27 for a list of these). Such interactions are not only ubiquitous throughout metabolism, but they exist in all cell types, procaryote and eucaryote. In many of these systems the advantages of and regulatory power of enzyme-enzyme or enzyme-structural protein interactions has been amply demonstrated. The more difficult task is to assess accurately quantitative aspects of a system that varies between the solid, gel, and aqueous state. It is clear that the metabolic paradigm of soluble randomly dispersed metabolic elements in cells must be replaced, and new theoretical and experimental approaches introduced into this vital area of biological research.
Funding Information
  • Department of Veterans Affairs, NSF, Hungarian National Science Foundation OTKA (MCB-9418565, T-5412, T-6349, T17380)