Effects of organic amendments on sulfate reduction activity, H2 consumption, and H2 production in salt marsh sediments

Abstract
Sulfate reduction activity (SRA) was measured via the radioactive tracer (35SO4 =) technique in sediment samples from the Canary Creek Marsh in Lewes, Delaware. Basal levels of SRA ranged from 130 to 319 nmoles of sulfate reduced/gram dry sediment/hour. With the exception of lactate and formate, all organic acids tested resulted in no stimulation of SRA, whereas straight chain alcohols (C1-C4) all gave a significant increase in SRA. In addition, H2, glucose, and cellobiose caused a twofold or greater increase in SRA, while cellulose amendments did not alter SRA. Molybdate, an inhibitor of sulfate-reducing bacteria (SRB), caused a total inhibition in SRA. 2-Bromoethanesulfonic acid (BES), an inhibitor of methanogenic bacteria, caused a slight decrease in SRA. Hydrogen was not produced in detectable quantities in unamended samples but was produced in large amounts in glucose-amended samples. Hydrogen was rapidly consumed in unamended samples with molybdate additions causing a significant decrease in the rate of H2 consumption. A variety of organic amendments was found to stimulate H2 uptake. These studies suggest that SRB are stimulated by a large variety of organic amendments in situ and that SRB play a major role in maintaining low partial pressures of H2 in marsh sediments.