Abstract
The concepts of continuous and uniform weak convergence and versions of stochastic equicontinuity are discussed in the context of integrated processes of order one. The considered processes depend on a parameter vector in a specific fashion which is relevant for integrated and cointegrated systems with non-linearities in parameters. The results of the paper can be applied to obtain asymptotic distributions of estimators and test statistics in such systems. In a correctly specified cointegrated Gaussian system, this can be done in a very convenient way. Combining the results of this paper with available general maximum likelihood estimation theories readily shows that the maximum likelihood estimator is asymptotically optimal with a mixed normal limiting distribution. The usefulness of this approach is demonstrated by analyzing a regression model with autoregressive moving average errors and strictly exogenous regressors which may be either integrated of order one, asymptotically stationary, or nonstochastic and bounded.

This publication has 1 reference indexed in Scilit: