An HIV Feedback-Resistor: Auto-Regulatory Circuit Deactivator and Noise Buffer
Preprint
- 9 January 2007
Abstract
Many viruses have the cunning ability to enter a hibernative or off state, termed latency or lysogeny. When in a latent state, the virus is unable to replicate, and its gene expression program is largely shut down. This facility for lying dormant typically ensures lifelong persistence of the virus in the host; it is also a particularly problematic obstacle in the treatment of HIV. For most viruses, the molecular regulation of entry into latency is not completely understood, but it is believed that viral gene expression must be deactivated in some way. In this study, we introduce a new regulatory motif, the feedback resistor, that enables a genetic circuit to shut off without the need for an active repressor molecule. We first show that many animal viruses might encode feedback resistors in their regulatory circuits. Then, by using a combination of mathematical theory and single-cell real-time imaging experiments, we show that a feedback resistor in the HIV Tat transcriptional circuit likely allows the HIV virus to enter into latency. We postulate that feedback resistors may give increased stability and control in the complex noisy signaling environment of the cell.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: