Mixed‐effects regression models for studying the natural history of prostate disease
- 15 March 1994
- journal article
- Published by Wiley in Statistics in Medicine
- Vol. 13 (5-7) , 587-601
- https://doi.org/10.1002/sim.4780130520
Abstract
Although prostate cancer and benign prostatic hyperplasia are major health problems in U.S. men, little is known about the early stages of the natural history of prostate disease. A molecular biomarker called prostate specific antigen (PSA), together with a unique longitudinal bank of frozen serum, now allows a historic prospective study of changes in PSA levels for decades prior to the diagnosis of prostate disease. Linear mixed‐effects regression models were used to test whether rates of change in PSA were different in men with and without prostate disease. In addition, since the prostate cancer cases developed their tumours at different (and unknown) times during their periods of follow‐up, a piece‐wise non‐linear mixed‐effects regression model was used to estimate the time when rapid increases in PSA were first observable beyond the background level of PSA change. These methods have a wide range of applications in biomedical research utilizing repeated measures data such as pharmacokinetic studies, crossover trials, growth and development studies, aging studies, and disease detection.Keywords
This publication has 18 references indexed in Scilit:
- An overview of methods for the analysis of longitudinal dataStatistics in Medicine, 1992
- Measurement of Prostate-Specific Antigen in Serum as a Screening Test for Prostate CancerNew England Journal of Medicine, 1991
- The prostate: An increasing medical problemThe Prostate, 1990
- Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures DataJournal of the American Statistical Association, 1988
- Prostate-Specific Antigen as a Serum Marker for Adenocarcinoma of the ProstateNew England Journal of Medicine, 1987
- Random-Effects Models for Longitudinal DataPublished by JSTOR ,1982
- Estimating the transition between two intersecting straight linesBiometrika, 1971