Efficient computation of spatial joins
- 30 December 2002
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
Abstract
Spatial joins are join operations that involve spatial data types and operators. Due to basic properties of spatial data, many conventional join strategies suffer serious performance penalties or are not applicable at all. The join strategies known from conventional databases that can be applied to spatial joins and the ways in which some of these techniques can be modified to be more efficient in the context of spatial data are discussed. A class of tree structures, called generalization trees, that can be applied efficiently to compute spatial joins in a hierarchical manner are described. The performances of the most promising strategies are analytically modeled and compared.Keywords
This publication has 9 references indexed in Scilit:
- Spatial join indicesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- The implementation of POSTGRESIEEE Transactions on Knowledge and Data Engineering, 1990
- The DASDBS project: objectives, experiences, and future prospectsIEEE Transactions on Knowledge and Data Engineering, 1990
- Join indicesACM Transactions on Database Systems, 1987
- Spatial query processing in an object-oriented database systemACM SIGMOD Record, 1986
- The design of POSTGRESPublished by Association for Computing Machinery (ACM) ,1986
- The Grid FileACM Transactions on Database Systems, 1984
- R-treesPublished by Association for Computing Machinery (ACM) ,1984
- Approximating block accesses in database organizationsCommunications of the ACM, 1977