Discrete Sobolev inequalities andLperror estimates for finite volume solutions of convection diffusion equations
Open Access
- 1 July 2001
- journal article
- research article
- Published by EDP Sciences in ESAIM: Mathematical Modelling and Numerical Analysis
- Vol. 35 (4) , 767-778
- https://doi.org/10.1051/m2an:2001135
Abstract
The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce Lp error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.Keywords
This publication has 21 references indexed in Scilit:
- Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshesESAIM: Mathematical Modelling and Numerical Analysis, 2000
- Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problemESAIM: Mathematical Modelling and Numerical Analysis, 1999
- Convergence of finite volume schemes for semilinear convection diffusion equationsNumerische Mathematik, 1999
- A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equationsPublished by American Institute of Aeronautics and Astronautics (AIAA) ,1995
- Convergence d'un schéma de type éléments finis-volumes finis pour un système formé d'une équation elliptique et d'une équation hyperboliqueESAIM: Mathematical Modelling and Numerical Analysis, 1993
- A control volume method to solve an elliptic equation on a two-dimensional irregular meshComputer Methods in Applied Mechanics and Engineering, 1992
- The Finite Volume Element Method for Diffusion Equations on General TriangulationsSIAM Journal on Numerical Analysis, 1991
- On the finite volume element methodNumerische Mathematik, 1990
- Elliptic Boundary Value Problems on Corner DomainsPublished by Springer Nature ,1988
- Some Error Estimates for the Box MethodSIAM Journal on Numerical Analysis, 1987