Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations

Abstract
The dependence of fluctuations in atmospheric absorption and refraction upon fluctuations in temperature, humidity, and pressure is found for infrared frequencies. This dependence has contributions from line and continuum absorption and from anomalous refraction by water vapor. The functions that relate these fluctuations are necessary for evaluating degradation of electromagnetic radiation by turbulence. They are computed for a given choice of mean atmospheric conditions and graphed as functions of frequency in the wavelength range 5.7 μm to radio waves. It is found that turbulent fluctuations in total pressure give a negligible contribution to absorption and refraction fluctuations. Humidity fluctuations dominate absorption fluctuations, but contributions by temperature and humidity affect refraction fluctuations. Sufficiently strong humidity fluctuations can dominate the refraction fluctuations for some infrared frequencies but not for visible frequencies. We examine the variance of log amplitude for scintillation of infrared light to determine whether absorption or refraction fluctuations dominate under several conditions.