Constructions of Mutually Unbiased Bases

Abstract
Two orthonormal bases B and B' of a d-dimensional complex inner-product space are called mutually unbiased if and only if ||^2=1/d holds for all b in B and b' in B'. The size of any set containing (pairwise) mutually unbiased bases of C^d cannot exceed d+1. If d is a power of a prime, then extremal sets containing d+1 mutually unbiased bases are known to exist. We give a simplified proof of this fact based on the estimation of exponential sums. We discuss conjectures and open problems concerning the maximal number of mutually unbiased bases for arbitrary dimensions.
All Related Versions

This publication has 0 references indexed in Scilit: