Carbon and energy metabolism of atp mutants of Escherichia coli
- 1 December 1992
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 174 (23) , 7635-7641
- https://doi.org/10.1128/jb.174.23.7635-7641.1992
Abstract
The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis.Keywords
This publication has 24 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- The Proton-Translocating ATPase of Escherichia ColiAnnual Review of Biophysics, 1990
- Escherichia coli mutants defective in the uncH geneJournal of Bacteriology, 1983
- Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli Mapped by Tn 10 insertion mutationsMolecular Genetics and Genomics, 1982
- The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coliMolecular Genetics and Genomics, 1981
- The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit δ of the membrane bound ATP synthase of Escherichia coliMolecular Genetics and Genomics, 1981
- Respiratory control in Escherichia coliFEBS Letters, 1980
- Origin of replication, oriC, of the Escherichia coli chromosome on specialized transducing phages λasnMolecular Genetics and Genomics, 1978
- Oxidative phosphorylation in Escherichia coli K 12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphataseBiochemical Journal, 1971
- DNA replication and the division cycle in Escherichia coliJournal of Molecular Biology, 1967