Direct numerical simulation of turbulent flow in a square duct
- 1 December 1993
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 257 (-1) , 65-95
- https://doi.org/10.1017/s002211209300299x
Abstract
A direct numerical simulation of a fully developed, low-Reynolds-number turbulent flow in a square duct is presented. The numerical scheme employs a time-splitting method to integrate the three-dimensional, incompressible Navier-Stokes equations using spectral/high-order finite-difference discretization on a staggered mesh; the nonlinear terms are represented by fifth-order upwind-biased finite differences. The unsteady flow field was simulated at a Reynolds number of 600 based on the mean friction velocity and the duct width, using 96 × 101 × 101 grid points. Turbulence statistics from the fully developed turbulent field are compared with existing experimental and numerical square duct data, providing good qualitative agreement. Results from the present study furnish the details of the corner effects and near-wall effects in this complex turbulent flow field; also included is a detailed description of the terms in the Reynolds-averaged streamwise momentum and vorticity equations. Mechanisms responsible for the generation of the stress-driven secondary flow are studied by quadrant analysis and by analysing the instantaneous turbulence structures. It is demonstrated that the mean secondary flow pattern, the distorted isotachs and the anisotropic Reynolds stress distribution can be explained by the preferred location of an ejection structure near the corner and the interaction between bursts from the two intersecting walls. Corner effects are also manifested in the behaviour of the pressure-strain and velocity-pressure gradient correlations.Keywords
This publication has 25 references indexed in Scilit:
- Calculation of two‐dimensional shear‐driven cavity flows at high reynolds numbersInternational Journal for Numerical Methods in Fluids, 1992
- Reynolds-stress and dissipation-rate budgets in a turbulent channel flowJournal of Fluid Mechanics, 1988
- The effects of curvature in wall-bounded turbulent flowsJournal of Fluid Mechanics, 1987
- The Numerical Prediction of Developing Turbulent Flow in Rectangular DuctsJournal of Fluids Engineering, 1981
- Discussion: “A Simple Thermal Correction for Large Spin Traction Curves” (Tevaarwerk, J. L., 1981, ASME J. Mech. Des., 103, pp. 440–445)Journal of Mechanical Design, 1981
- Secondary flows in ducts of square cross-sectionJournal of Fluid Mechanics, 1972
- On some aspects of fully-developed turbulent flow in rectangular channelsJournal of Fluid Mechanics, 1965
- The production and diffusion of vorticity in duct flowJournal of Fluid Mechanics, 1964
- A Comparison of Predicted and Measured Friction Factors for Turbulent Flow Through Rectangular DuctsJournal of Heat Transfer, 1962
- Untersuchungen über turbulente Strömungen in nicht kreisförmigen RohrenArchive of Applied Mechanics, 1930