Upper mantle velocity structure beneath southern Africa from modeling regional seismic data
Open Access
- 10 March 1999
- journal article
- research article
- Published by American Geophysical Union (AGU) in Journal of Geophysical Research
- Vol. 104 (B3) , 4783-4794
- https://doi.org/10.1029/1998jb900058
Abstract
The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410‐ and 670‐km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ∼800‐km depth using the Wiechert‐Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300‐km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300‐ and 420‐km depth. Little evidence is found for a pronounced low‐velocity zone in the upper mantle. A high‐velocity gradient zone is required above the 410‐km discontinuity, but both sharp and smooth 410‐km discontinuities are permitted by the data. The 670‐km discontinuity is characterized by high‐velocity gradients over a depth range of ∼80 km around 660‐km depth. Limited S wave travel time data suggest fast S wave velocities above ∼150‐km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.Keywords
This publication has 30 references indexed in Scilit:
- The October 30, 1994, seismic disturbance in South Africa: Earthquake or large rock burst?Journal of Geophysical Research, 1997
- Seismic experiment reveals rifting of craton in TanzaniaEos, 1996
- Deep seismic structure of the Kaapvaal cratonTectonophysics, 1996
- Pwave velocity of Proterozoic upper mantle beneath central and southern AsiaJournal of Geophysical Research, 1996
- Transition zone velocity gradients and the 520‐km discontinuityJournal of Geophysical Research, 1996
- PrefaceTectonophysics, 1994
- The African SuperswellGeophysical Research Letters, 1994
- Degree 12 model of shear velocity heterogeneity in the mantleJournal of Geophysical Research, 1994
- A three-dimensional seismic image of the crust and upper mantle beneath the Kenya riftNature, 1991
- The application of synthetic seismograms to the interpretation of the upper mantle P-wave velocity structure in northern AustraliaPhysics of the Earth and Planetary Interiors, 1985