Assessing the Relative Roles of Initial and Boundary Conditions in Interannual to Decadal Climate Predictability

Abstract
The relative importance of initial conditions and boundary conditions in interannual to decadal climate predictability is addressed. A simple framework is developed in which (i) ensembles of climate model simulations with changing external forcing can be measured against climatology to get an estimate of the timescale on which changing boundary conditions can provide predictive skill, and (ii) the rate of spread of ensembles of simulations with small perturbations to the initial conditions can be measured against climatology to assess the timescale at which the information in the initial conditions is degraded by chaotic error growth. A preliminary test of the method on a limited number of climate model simulations is presented.