Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion
Top Cited Papers
- 1 November 2005
- journal article
- Published by Geological Society of London in Quarterly Journal of Engineering Geology and Hydrogeology
- Vol. 38 (4) , 363-375
- https://doi.org/10.1144/1470-9236/05-008
Abstract
Hard rock cliffs represent approximately 75% of the world's coastline. The rate and nature of the mechanisms that govern the retreat of these cliffs remain poorly constrained, primarily because conventional approaches employed to monitor these processes are generally inadequate for describing cliff erosion processes directly. These techniques are usually centred upon the interpretation of data collected periodically from aerial sensors, including stereographic aerial photographs and more recently air-borne LIDAR. These methods are generally not capable of assessing the pattern of erosion on the cliff face due to the oblique viewing angles, and hence tend to concentrate upon the resultant recession of the cliff top rather than change on the cliff face. Thus, processes of undercutting and small scale iterative failures of localized sections of the cliff face are generally not recorded. It is only when a failure affects the cliff top that any retreat is recorded. It is therefore unsurprising that cliff erosion is commonly deemed to be episodic. This paper presents a new approach to detailed cliff process monitoring using terrestrial laser scanning (TLS), which directly monitors changes on coastal cliff faces. The method allows the quantification of failures ranging in scale from the detachment of blocks of a few centimetres in dimension through to large rock, debris or soil, falls, slides and flows over 1000 m 3 . The collection of data is on-site and rapid and hence cost effective, providing a detailed description of the nature of coastal cliff erosion. This paper describes the methodological approach and demonstrates the range of results which can be generated, here shown for 16 months of monitoring data collected for a near-vertical cliff section on the coast of North Yorkshire, UK. The results demonstrate that terrestrial laser scanning can be used to quantify cliff failures to a previously unobtainable precision. The results reveal a strong spatial and temporal pattern of cliff collapse which contradicts commonly held perceptions of the nature of coastal cliff development.This publication has 8 references indexed in Scilit:
- Combined Digital Photogrammetry and Time‐of‐Flight Laser Scanning for Monitoring Cliff EvolutionThe Photogrammetric Record, 2005
- Use of a three‐dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolutionEarth Surface Processes and Landforms, 2004
- Landslide Laser Scanning: a new look at an old problemQuarterly Journal of Engineering Geology and Hydrogeology, 2003
- The application of a long-range laser scanner for monitoring volcanic activity on Mount EtnaJournal of Volcanology and Geothermal Research, 2003
- Investigation and management of soft rock cliffsPublished by Emerald Publishing ,2002
- Laser-ranging scanning system to observe topographical deformations of volcanoesApplied Optics, 1997
- Steady state behaviour of the black ven mudslide: The application of archival analytical photogrammetry to studies of landform changeEarth Surface Processes and Landforms, 1995
- Rock Slope EngineeringPublished by Taylor & Francis ,1981