Abstract
Three experiments were carried out that employed low-frequency tone complexes with interaural delays that varied across the frequency domain. In the first experiment, threshold interaural delays were measured for three-tone complexes for which one, two, or all three components were delayed. The center frequency was 750 Hz and the frequency spacing (.DELTA.f) between components was 20, 50, 100, 250, or 450 Hz. For all .DELTA.f''s, the presence of two diotic components elevated the threshold interaural delays obtained for the third component relative to that obtained for a pure tone of the same frequency. In the second experiment, observers made left-right judgments regarding the direction of movement of signals for which two components were delayed by 25 .mu.s to the left ear during one interval and to the right ear during the other interval, while a third component of a variable time difference was delayed to the opposite side as the tone pair. Subjects reported single intracranial images during each interval, and the data showed that interaural delays of one component to one ear could be offset by interaural delays of the other two components to the other ear. In the final experiment, threshold interaural delays were measured for five-tone complexes in which one, two, three, four, or five components were delayed. The center frequency was 750 Hz and .DELTA.f was fixed at 100 Hz. Thresholds decreased in a linear fashion as the number of delayed components increased, falling by about a factor of 5 as the number of delayed components went from one to five. These results are consistent with spectrally synthetic binaural processing, with the lateral position of intracranial images determined by a combination of interaural information across the spectrum. These effects could be brought about by a linear combination of the outputs of frequency-specific cross-correlation networks or by a wideband cross correlation of the signals at the two ears.

This publication has 15 references indexed in Scilit: