Abstract
A series of tripeptides that satisfy the -Asn-Xaa-Thr/Ser- primary sequence requirement [Marshall, R. D. (1972) Annu. Rev. Biochem. 41, 673-702] for N-glycosylation have been synthesized and examined as potential acceptors in an oligosaccharyltransferase assay. Of these, six (Ac-Asn-Ala-Thr-NH2, Ac-Asn-Leu-Thr-NH2, Ac-Asn-Asp-Thr-NH2, Ac-Asn-D-Ala-Thr-NH2, Ac-Asn-Pro-Thr-NH2, and Ac-Asn-AIB-Thr-NH2) were examined for solution conformational properties in dimethyl sulfoxide with use of amide proton temperature coefficients, 3JHN alpha analysis [Pardi, A., et al. (1984) J. Mol. Biol. 180, 741-751], and 2-D ROESY experiments [Bothner-By, A. A., et al. (1984) J. Am. Chem. Soc. 106, 811-813]. The analysis reveals that the peptides that serve as acceptors in the transferase assay demonstrate similar conformational properties in solution. These are highlighted by a secondary structural motif that involves the interaction between the asparagine side-chain carboxamide and the backbone amide of the threonine. The peptides that show very poor acceptor, or even nonacceptor, properties in the oligosaccharyltransferase assay demonstrate different conformational features in solution. These observations may explain the distinct biological activity observed for these peptides.

This publication has 0 references indexed in Scilit: