Abstract
The joint action of L-valine and L-isoleucine, L-leucine and L-isoleucine, and L-valine and L-leucine on the growth of Spirodela polyrhiza was established. The effect of one branched-chain amino acid on growth inhibition by another one was compared with the non-specific antagonisms which glycine and L-alanine exert on growth inhibition by singly supplied branched-chain amino acids. In this way specific and non-specific interactions could be distinguished. It appeared that: (1) L-isoleucine was a specific antagonist of L-valine; (2) L-leucine was a specific antagonist of L-isoleucine; (3) L-valine and L-leucine were synergistic growth inhibitors. Further, it was found that: (4) growth inhibition by L-leucine was specifically antagonized by simultaneously supplied L-valine and L-isoleucine; (5) an excess of L-isoleucine strongly inhibited the conversion of exogenous valine into leucine; (6) accumulation of valine was typical of isoleucine-induced growth inhibition. The results are consistent with the view that growth inhibition by L-valine and L-leucine is due to the blocking of acetohydroxy acid synthetase, the first common enzyme in the valine-isoleucine biosynthetic pathway. Growth inhibition by L-isoleucine, however, seems to result from inhibition of leucine synthesis at a step after 2-oxoisovaleric acid. Some aspects of the regulation of branched-chain amino acid biosynthesis in higher plants are discussed.