One of the applications of remotely sensed surface temperature is to determine the latent heat flux (LE) or evapotranspiration (ET) from held to regional scales. A common approach has been to use surface-air temperature differences in a bulk resistance equation for estimating sensible beat flux, H, and to subsequently solve for LE as a residual in the one-dimensional energy balance equation. This approach has been successfully applied over uniform terrain with nearly full, actively transpiring vegetative cover; however, serious discrepancies between estimated and measured ET have been observed when there is partial canopy cover. In an attempt to improve the estimates of H and as a result compute more accurate values of ET over partial canopy cover, one- and two-layer resistance models are developed to account for some of the factors causing the poor agreement between computed and measured ET. The utility of these two approaches for estimating ET at the field scale is tested with remotely sensed a... Abstract One of the applications of remotely sensed surface temperature is to determine the latent heat flux (LE) or evapotranspiration (ET) from held to regional scales. A common approach has been to use surface-air temperature differences in a bulk resistance equation for estimating sensible beat flux, H, and to subsequently solve for LE as a residual in the one-dimensional energy balance equation. This approach has been successfully applied over uniform terrain with nearly full, actively transpiring vegetative cover; however, serious discrepancies between estimated and measured ET have been observed when there is partial canopy cover. In an attempt to improve the estimates of H and as a result compute more accurate values of ET over partial canopy cover, one- and two-layer resistance models are developed to account for some of the factors causing the poor agreement between computed and measured ET. The utility of these two approaches for estimating ET at the field scale is tested with remotely sensed a...