Quantum mechanical tunneling through a time-dependent barrier

Abstract
We present a numerical investigation of quantum mechanical tunneling process in a time‐dependent (fluctuating) barrier using a one dimensional model of Eckart barrier. The tunneling probability is calculated for two cases in which (1) the height of the barrier is undergoing harmonic oscillation with frequency ω and (2) the location of the barrier is undergoing harmonic oscillation with frequency ω. It is observed in both cases that the quantum mechanical tunneling probability exhibits a maximum as a function of the oscillating frequency ω between the low and high frequency limits. The physical origin and process underlying this resonantlike phenomenon are proposed in this paper based on the current model study.