Dual Mechanisms in Polyamine-mediated Control of Ribonuclease Activity in Oat Leaf Protoplasts

Abstract
Dibasic amino acids and polyamines added to oat (Avena sativa L.) leaf protoplast isolation media decrease the RNase activity of extracted protoplasts relative to controls. This effect, which is manifested even when the added polyamine is removed by exhaustive dialysis prior to assay, is due to a prevention of the rise in RNase activity which usually follows protoplast isolation. Polyamines, but not dibasic amino acids, also decrease RNase activity in vitro. This in vitro effect seems to result from electrovalent attachment of the polyamine to the RNA, because the greater the net positive charge on the polyamine, the greater is its inhibitory effect in vitro. The activity of dibasic amino acids when added during protoplast isolation probably results from their conversion to polyamines.