The Noradrenergic Innervation of Identified Hypothalamic Magnocellular Somata and its Contribution to Lactation‐Induced Synaptic Plasticity

Abstract
Despite several studies showing that the rat supraoptic (SON) and paraventricular (PVN) nuclei are innervated by noradrenergic afferents, the respective contribution of these inputs to the oxytocinergic and vasopressinergic neuronal populations remains to be clearly defined. In the present study, we used the unbiased disector method to estimate the numerical density of noradrenergic varicosities on identified oxytocinergic and vasopressinergic somata in the rat SON and PVN. The analysis was carried out on semithin (1 micron) plastic sections cut from vibratome slices (50 microns) of the SON and PVN which had been double-labelled for noradrenaline (NA) and oxytocin- or vasopressin-related neurophysin. These preparations displayed many noradrenergic varicosities which electron microscopy showed to represent, in the main, synaptic boutons. Our quantitative analysis revealed that noradrenergic varicosities contacted oxytocinergic and vasopressinergic somata to a similar extent in male and female rats, under basal conditions of hormone secretion. The incidence of these axo-somatic contacts was similar in the SON and PVN. In contrast, in lactating rats, in which oxytocin secretion is enhanced, there was a significant increase in the density of noradrenergic varicosities apposed to oxytocinergic somata, in both nuclei. Our observations indicate that, in male and female rats under normal conditions, noradrenergic afferents innervate each type of neurosecretory somata, in both magnocellular nuclei, in a similar fashion. They reveal, moreover, that noradrenergic afferents participate in lactation-induced structural plasticity of synapses impinging on oxytocinergic somata.

This publication has 0 references indexed in Scilit: