Trimethylphenylammonium-Smectite as an Effective Adsorbent of Water Soluble Aromatic Hydrocarbons

Abstract
Homoionic trimethylphenylammonium (TMPA)- and tetramethylammonium (TMA)-clays were prepared by Ion-exchange reactions using two smectite clays that differed in their cation exchange capacities and surface charge densities. These clays are referred to as a low-charge (SAC) and high-charge (SWa)-smectite. The organo-clays were evaluated as adsorbents of water soluble aromatic hydrocarbons including benzene, toluene, ethylbenzene, p-xylene, butylbenzene, and naphthalene. All of the aromatic hydrocarbons tested were effectively removed from water by the low-charge TMPA-smectite. The low-charge TMA-smectite was an effective adsorbent for benzene but was ineffective in the removal of the alkylbenzenes and naphthalene from water. The effect of surface charge on the adsorption properties of TMPA-smectite was pronounced. The uptake of benzene and toluene by the high-charge TMPA-smectite was greatly reduced as compared to the low-charge TMPAsmectite. These results suggest the utility of TMPA-smectite as a liner material for petroleum storage containers and waste disposal reservoirs. The use of TMPA-smectite in conjunction with Na-smectite would provide a barrier with the ability to impede the flow of water and to effectively adsorb dissolved organic contaminants.

This publication has 4 references indexed in Scilit: