Abstract
The activities of some glycolytic and associated enzymes have been determined in the muscles of trout and carp to investigate the possibility that the discrepancies previously reported between lactate accumulation and anoxic tolerance in these two fish result from underlying differences in glycolytic potential. Steady state concentrations of certain glycolytic intermediates were also determined in freeze‐clamped muscles from tankrested fish. The activities of hexokinase, phosphorylase and phosphofructokinase were approximately 2–3 times lower in carp than trout white muscles. Pyruvate kinase and lactate dehydrogenase activities were 5 times lower in carp white muscle. The lower, broader pH optima of lactate dehydrogenase and pyruvate kinase from carp compared to trout muscles is thought to be correlated with the greater anoxic tolerance of the carp. Glycolytic enzyme profiles were markedly different between the red and white muscles of the rainbow trout but broadly similar, with the exception of hexokinase activity, for the corresponding muscles of the carp. The results are discussed in relation to what is known about anaerobiosis in these two species and the comparative physiology of red and white muscles in fish.