Serial correlation and distributions on the shere

Abstract
Estimation and tests for serial correlation in recation and regression models with normal error have been derive from various points of view; for example: Anderson (1948), Durbi for Watson (1950, 1951, 1971), Theil (1965), Durbin (1970), Haq (1970), Kadiyala (1970), Abrahamse & Louter (1971), Levenbac (1972), Berenblut & Webb (1973), Phillips & Harvey (1974), a Sims (1975). In this paper we derive likelihood functions and most powerful tests for serial correclation in Locationa and regression models with arbitrary but specificed error; the methods extend to include the determination of the likelihood for the parameter of the error distribution. In Section 2, we survey the modthods that have been used in deriving the various tests and estimates in the literature. In Section 2, we introduce the stataistical model that directly describes the error distribution and we obtain the likelihood function for error correlation and determine locally and specifically kost powerful tests for correlation. In Section 3 we consider the case with normal error derive a normal distribution on the sphere by radial projection. The likelihood function and test are then specialized to the case of normal error in Section 4. The computational procedures for the tests and related power functions are examined in Section 5. Power comparisons for the textile data of Theil and Nagar (1961), the consumption data of Kelin (1950), and the plums and the wheat data of Hildreth & Lu (1960) are presented in Section 6, while the likelihood functions for correlation in these data are given in Section 7.

This publication has 10 references indexed in Scilit: