Cytochrome P‐450‐catalyzed asymmetric epoxidation of simple prochiral and chiral aliphatic alkenes: species dependence and effect of enzyme induction on enantioselective oxirane formation

Abstract
The enantioselectivity of the in vitro conversion of simple prochiral and chiral aliphatic alkenes into oxiranes by liver microsomes of untreated or induced (phenobarbital) rats, of untreated or induced (phenobarbital, benzo[α] pyrene) mice, and of humans was determined by complexation gas chromatography. The enantiomeric excess (ee) of the epoxides extends from 0 (trimethyloxirane) to 50% (ethyloxirane). The configuration (R or S) of the enantiomers formed in excess is consistent for homologous oxiranes but is species dependent and in some cases influenced by enzyme induction. Enantioselectivity differences of aliphatic alkene epoxidation by human liver microsomes of four individuals are negligible.