Abstract
Summer rainfall in the central United States has singular interannual variations of a 3–6-yr period. Identifying the causes of these variations assures improvement in predictions of summer rainfall in the region. A review of previous studies revealed a puzzling situation: the outstanding interannual variations of the summer rainfall in the central United States showed no persistent correlations with known influential interannual variations in the Northern Hemisphere and the El Niño–Southern Oscillation (ENSO). This study was undertaken to identify the cause of this situation and ultimately explain the causes of the observed interannual summer rainfall variations. Its results showed a teleconnection of the ENSO with the summer rainfall in the central United States. The intensity of which has varied over the last 125 years. The teleconnection was active in two epochs, 1871–1916 and 1948–78, and absent in the two epochs 1917–47 and 1979–present. This variation was associated with a multidecadal vari... Abstract Summer rainfall in the central United States has singular interannual variations of a 3–6-yr period. Identifying the causes of these variations assures improvement in predictions of summer rainfall in the region. A review of previous studies revealed a puzzling situation: the outstanding interannual variations of the summer rainfall in the central United States showed no persistent correlations with known influential interannual variations in the Northern Hemisphere and the El Niño–Southern Oscillation (ENSO). This study was undertaken to identify the cause of this situation and ultimately explain the causes of the observed interannual summer rainfall variations. Its results showed a teleconnection of the ENSO with the summer rainfall in the central United States. The intensity of which has varied over the last 125 years. The teleconnection was active in two epochs, 1871–1916 and 1948–78, and absent in the two epochs 1917–47 and 1979–present. This variation was associated with a multidecadal vari...